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An approximate mathematical model and methodology for designing a horizontal di- 
rectional crystallization (HDC) apparatus are proposed. The results of computa- 
tions are compared with experimental data. 

A method for the experimental investigation of the formation of fields T during the 
growing of leucosapphire single crystals is elucidated in [i], which permits obtaining re- 
liable experimental data. Experimental results are presented there on the fields T directly 
in the technological process for one of the HDC apparatus. However, at this time there is 
already a large number of HDC units that differ in the structural solution and the geometric 
parameters of the crystallization and annealing zones. In this case it is not expedient 
to perform experimental investigations on each kind of apparatus. This is related primarily 
to the duration of the technological process (from 4 to 10-12 days). Moreover, existing 
equipment for conducting the experimental investigation should, as a rule, be subjected to 
a number of alterations, window installations in the screens and chamber, installation of 
additional measuring apparatus, etc., which cannot always be satisfied under factory condi- 
tions. 

In this connection, the question of the development of a mathematical model which 
could be used to compute both the parameters of the technological process and the construc- 
tion and parameters of the thermal component of the installation becomes no less urgent. 
In other words, there is a need to produce a mathematical model and a mode of computation 
for the class of installations as a whole. In this case experimental investigations are 
needed to establish the adequacy of the mathematical model to the real process in the in- 
stallation, which in turn will permit the solution of two problems. On the one hand, this 
is the selection of the thermal regime required for growth by means of computing different 
versions on an electronic computer, and on the other, it is a sufficiently accurate computa- 
tion of the structural elements of the thermal component, and a clarification of the degree 
of their influence on the melt--crystal system being formed in the technological process of 
the field T. This latter is also necessary for the development of equipment for another 
dimension of the crystal being grown, when the preliminary computations of the structural 
solutions reduce the design time significantly. 

The present paper is devoted to the development of a method of designing an installa- 
tion of the type SGVK-"Sapphire" intended for the growing of leucosapphire single crystals 
by the HDC method in order to obtain sufficiently confident quantitative results on the 
fields T in a leucosapphire at different stages of the technological process. The main 
attention in the development of the design and program method was turned to the possibility 
of designing the crystallization installation as a whole. 

Such an approach naturally involves a whole set of simplifying assumptions in the compu- 
tation of the field T in a leucosapphire; however, it affords the possibility of studying 
the influence of different structural elements of the installation (heaters, screens, dia- 
phragms, etc.) on the field T being formed in the melt--crystal system by using the mathe- 
matical model. The relation between the field T and the energy parameters of the installa- 
tion at different stages of the process also turns out to be quite important, since it per- 
mits the time program to control the heater power to be obtained in a first approximation. 
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Fig. i. Diagram of the working body of an installation for 
growing platelets of leucosapphire: i, 4) bunches of molybdenum 
screens; 2) melt of initial material; 3) crystal to be grown; 
5) container; 6) molybdenum stool. 

However, the results obtained showed that the method and program developed permit quan- 
titative estimation of the field T in the melt--crystal system also since comparing the 
computation and experiment results yields a discrepancy of not more than 3-4% in the abso- 
lute values of the temperature. Such accuracy is naturally small for a detailed study of 
the crystal growth process; however, it is totally adequate for the development of the 
thermal component of the apparatus in the design stage and permits dispensing with addi- 
tional experiments on the model of the installation being developed for changes, say, in the 
size of the crystal to be grown. 

In the formulation it is probably meaningful to separate the problem into "internal" 
describing the heat transfer directly in the container with the item, and "external" where 
the problem of heat transfer between the item, the heater, and the heat insulation, as well 
as in elements of the latter up to the cooled housing of the installation, is solved. 

The container in which the crystallization is performed (Fig. I) has the shape of a 
boat fabricated from molybdenum 5; thermally insulated at the endfaces by bunches of 
tungsten screens i, 4; arranged onacommon stool 6; at the center location with respect to 
the heater there is the crystallizing part of the material 3 and the melt 2. 

Such a construction is a complex system, in the working space, which consists of sev- 
eral space domains, where each has its thermophysical and optical properties, dependent on 
the temperature and differing in direction. 

Optical materials, such as leucosapphire, possess high transparency in a broad spectrum 
range, in which connection a radiation--conductive heat-transfer problem (RCHT) must be 
solved to find the field T. On the other hand, to analyze the growing process of single 
crystals, a two-dimensional problem must be solved as a minimum, however, the program to 
compute the RCHT has been worked out in a one-dimensional formulation for a plane material 
layer at this time [2, 3]. In this connection, an attempt is made in this paper to use a 
packet of different programs developed in *VNIIETO [4, 5] (in both the exact and approximate 
formulation) for the computation of the installation, which would permit development of a 
method of computation for similar installations and technological processes by reliance on 
experimental results [!, 6]. 

The computational diagram of the installation is presented in Fig. 2. The stool with 
the container in which the crystal growing process occurs is represented as a complex body 
consisting of several layers (1-IV) with different thermophysical and optical properties. 
The internal surface of the installation heating component is separated into 28 zones (num- 
bers in circles) to take into account the most characteristic structure elements. The 
power is liberated in zones 5 and 24. The thermal insulation is a bunch of screens (the 
number of screens in the bunch is denoted by numbers in rectangles) arranged horizontally 
and vertically in different parts of the heating component, where the number of screens per 
bunch and the location correspond to the actual construction of the installation. 

The temperature dependences of their thermophysical properties are given in solving the 
internal problem for each layer of complex load. The temperature field is described by a 
two-dimensional Fourier equation 

r P O~ Ox ~x Oy L oy j 

The v a l u e s  o f  Cp(T)p a r e  g i v e n  by d i f f e r e n t  p a r a b o l i c  t e m p e r a t u r e  d e p e n d e n c e s  f o r  t he  s o l i d  
and l i q u i d  p h a s e s  

VNIIETO* i s  t he  p a r e n t  o r g a n i z a t i o n  m e n t i o n e d  i n  t h e  h e a d i n g .  
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F i g .  2. C o m p u t a t i o n a l  d i a g r a m  o f  t h e  i n s t a l l a t i o n  ( n u m b e r s  i n  
c i r c l e s  a r e  t h e  c o m p u t a t i o n  z o n e s ) .  

cI~ = /ClPl ( r )  at T < TpI. 
I c = p 2 ( T )  at r > / / r p 1 .  (2)  

Such an  a p p r o a c h  p e r m i t s  a n a l y s i s  a l s o  o f  n o n s t a t i o n a r y  p r o c e s s e s ,  i n  p a r t i c u l a r ,  t h e  
influence of heater temperature fluctuations on the field T in the melt--crystal system and 
the position of the phase transition boundary. However, these questions are outside the 
scope of this paper and will be examined later. 

The initial conditions are given either in the form of the initial temperature dis- 
tribution over the item 

T(~; v; ~) = To(~; g: o), ( 3 )  

or the temperature at all points of the item is taken constant 

T(~; v; ~) - -  To = const at " ~ = 0. ( 3 ' )  

In computing the nonstationary modes the Stefan conditions on the phase interface have the 
form 

OTs aTz , (4) 
LppV : ~'s ~ Xp-- Zz 

Ox Xp 

where Xs; X z are the heat conduction coefficients of the solid and liquid phases, respec- 

t ively. 

The condition of continuity of the heat flux (perfect contact) is satisfied on the 
boundaries between layers of the item with different thermophysical properties. Such an 
assumption can be considered valid since the initial material is melted and an almost perfect 
contact is formed with the bottom and walls of the container. 

In the external problem the heat transfer by radiation between the item surface and the 
heat insulation and heater elements is computed by a zonal method. All the surfaces taking 
part in the heat transfer are separated into zones whose temperature is considered constant. 
The item is divided into 32 zones, of which 20 zones are on the leucosapphire. The condi- 
tions on the outer boundaries have the form 

--X~ aT __O~ (5) 
N r~ ' 

where X i is the heat conduction coefficint of the material in the i-th section. 

The heat transfer by radiation is computed from the following equations 

'1 ,tq / = 1  
Ei + [3i -- r = [~ (i = 1, 2 . . . . .  m), (6)  

where E i is the effective radiation flux from the surface of the i-th section onto the 

surrounding body, 
1 

~ i  - -  - -  
8~ 

I; ~ is the coefficient for giving the resultant fluxes (8 = 0) 
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or temperatures (13 = i) for sections on the item surface (~ = i); ~i-i is the angular coef- 
ficient of heat transfer by radiation from the j-th to the i-th section, and fi = (i- ~i) 

Qi + 5.67Fi@i. 

The heat fluxes through its elements that have sufficiently complex configuration (Fig. 
2) are actually considered in computing the thermal insulation. The fundamental assumption 
taken is the absence of internal influence of the computation zones of thermal insulation on 
each other, i.e., the temperature field is considered one-dimensional and there is no heat 
flux by both heat conduction and radiation from zone to zone~within them. The temperature 
dependence of their thermophysical properties are given for each of the layers and each heat 
insulation computation zone, where the number of layers and zones is not limited in princi- 
ple and is determined by the possibilities of the electronic computer. This permits taking 
sufficiently accurate account of the real structural features of the apparatus. For in- 
stance, there can be in one heat insulation zone in the layers: screen insulation, back- 
fill, felt, metal; in another, screens, refractory ceramic, metal; in the third, massive 
metal sheets, screens, backfill, etc. The one-dimensional Fourier equation 

cm;n(T) p,n;,z 0---~- . . . .  Ox 2-n.n(r)  ox j '  (7)  

is used for the solution, where m;n is the number of the heat • computation zone 
and the layer, respectively, Cm;n(T ) is the temperature dependence of the specific heat in a 
given zone and layer, Pm;n is the material density, %m;n(T) is the heat conduction of the 
material of a given zone and layer. The number of equations equals the number of computa- 
tion zones and layers. 

In the case of screen heat insulation the number and material of the screens are 
modeled by using an equivalent heat conduction coefficient obtained from the flux balance 
for a system with a given quantity of screens N and a continuous heat insulation of identi- 
cal thickness with a system of screens 

%eq -- em~~ N(2  - -s in)  (TI q- TN)(T~ -}- T~), (8)  

where ~m is the emissivity of the screen material in the m-th zone, N is the number of 
screens in a given layer, and TI and T N are the respective temperatures of the first and Nth 
screens. 

Heat transfer from the cooling water or gas is accomplished on the cold heat insulation 
surface according to Newton's law 

- -  ~m OTto, n _ (So; m + ~1; mTm: ~)(T~; n - -  ~oI~;  ( 9 )  
Ox 

where ~o;m is the coefficient of heat elimination to the water in the m-th zone, ~1;m is a 
constant governing the temperature dependence of Uo;m, Tm;n is the temperature in the m-th 
zone on the heat insulation boundary, and Tcold is the temperature of the cooling water or 
gas. 

The initial conditions in the heat insulation have the form 

T~; ~ (x; x) = T~; ~ (x; 0) or T~; ~ (x; x) = To = const. (10)  

In this connection, as already mentioned, the leueosapphire is a material partially 
transparent tothermal radiation: the exact solution of the two-dimensional internal problem 
(also complicated by the presence of a phase transition) on the basis of the RCHT equations 
becomes impossible. However, one of the most important questions for the constructor in 
designing and building the installation as well as in checking out the technological regime 
is the selection of the construction of the thermal component that will permit obtaining 
the field T in the item sufficiently close to that required by the conditions of the techno- 
logical regime. As will be shown below, this problem can be solved successfully by using 
the considered approximate model of the installation, when complex RCHT computation pro- 
grams are used as auxiliary in the material. In this case, concepts of effective heat con- 
duction and equivalent emissivity of the material are used, which are computed by using pro- 
grams for the exact solution of RCHT problems. Such an approach permits sufficiently good 
agreement between the computed results and experiment, and what is most important, the in- 
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vestigation of different versions of the structural solutions by using an electronic com- 
puter without relying on the production of a model of the installation to be developed. 

The computation results obtained below afford the possibility of designing the struc- 
ture of the thermal component that is sufficiently close to the optimal and corresponds to 
technology requirements in the preliminary stages of producing the installation. A seemingly 
fine tuning of the thermal component structure and of the technological regime is accom- 
plished during the experiment, where different versions of the induced changes can also be 
computed first on the electronic computer to estimate the influence of these changes on the 
field T in the crystal. 

The practical realization of the presented formulation of the problem is the following. 
To take account of internal heat transport in the leucosapphire because of RCHT, the possi- 
bility of giving the temperature dependence of the effective heat-conduction coefficient 
lef as a fifth-degree polynomial in T is provided, where the polynomial coefficients are 
different in the x and y directions: 

~ : t~o~ -}- ~lxT + ~ixT 2 + ~3xT 3 -}- ~ T  ~ + ~5~T 5, 
(ll) 

Zu = Zou + ~lu T + ZiuT2 @ ~3y T3 -~- ~u T~ + E~u Tb" 

The majority of crystals of noncubic structure possess substantial anisotropy in the 
thermophysical properties, hence such accounting of the nonisotropic transport of the heat 
flux in the bulk of the growing material is practically always needed in a computation of 
the field T in crystals and opaque materials being grown with a definite orientation. In 
our opinion, this question is especially important when the results of solving the thermal 
problem are applied later to analyze thermoelastic stress fields. For semitransparent 
crystals, the values of lef can differ in direction by more than one order when using the 
effective heat conduction approximation which depends on the thickness of the material 
layer and the boundary conditions in addition to the absorption coefficient. 

Specific dependences for a leucosapphire crystal are computed as follows. 

For a given container position relative to the heater, the length of the part being 
crystallized can be determined to 5-10% accuracy, hence the crystal thickness is known. 

Furthermore, we assume that there is a plane layer of semiopaque material of thickness 
d, which is bounded by opaque walls with given temperatures TI and Ta and a spectral emis- 
sivity ell and eli. The temperature dependence of the thermophysical properties of the ma- 
terial is known. The temperature conditions (TI) are given exactly on one of the boundaries 
(the crystallization front). This is the crystallization temperature, while the optical 
properties ell are computed by starting from data on the refractive index and the absorption 
coefficient for the solid and liquid phases. On the other boundary, the spectral emissivity 
of molybdenum radiating into the leucosapphire is c~2, while the temperature can be de- 
termined from a preliminary calculation in a first approximation, when %ef is computed by the 
Polets formula [7]. Moreover, we obtain the temperature distribution in a plane layer from 
the exact solution of the RCHT problem. The temperature dependence of lef is then selected 
in such a way that the exact solution would agree with the approximate solution obtained 
with no worse than 0.5% error from the Fourier equation. The temperature dependence ob- 
tained for lef is inserted into the main program, and a complete analysis of the installa- 
tion is again performed, and the value of the temperature T2 and the location of the crys- 
tallization front are refined. The selection of the dependence of %ef in a direction per- 
pendicular to the direction of crystal growth is performed analogously, with the sole ex- 
ception that a program with one contact and one open boundary is used for the exact RCHT 
solution. As practice has shown, the discrepancy in the temperature at the container nose 
after 3-4 iterations does not usually exceed 0.7%. For instance, for the middle position 
of the container relative to the heater, when the length of leucosapphire part being crys- 
tallized is 80 mm, the expression 

~fx  ~ 4"446"103--10"6T-} -9.16"IO-3Ti-3.37"lO-6T~ ~ 4"49"10-'°T~ (12) 

is obtained for the heat conduction along the x axis. 

Temperature distributions in a 100-mm-thick leucosapphire layer are shown in Fig. 3 for 
the temperature drop T~ = 2200°K, T2 = 1000°K. It is well known that the known approximate 
methods [8, 9] which in the limit case of an optically thick layer, grazing radiation, yield 
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Temperature dependence of the molecular and ef- 
ficient heat conduction coefficients: a) computed dependences 
of lef and the molecular heat conduction coefficient of 
leucosapphire from [9] [i) coefficient of molecular heat con- 
duction, 2) computation of lef by the Polets formula; 3) 
computation of lef from the condition of agreement between 
the field T and the exact solution]; b) nature of the field 
T in a plane leucosapphire layer for different dependences of 
%ef on T [I) %el = %mol, curve I in Fig. 3a; 2) lef curve 2 
in Fig. 3a; 3) lef curve 3 in Fig. 3a, 4) %ef = const]. 
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Fig. 4. Comparison of the com- 
puted results and the experi- 
mental data obtained by using 
an IR pyrometer~ a) T = 18 h, 
the field T at 18 h after the 
beginning of the process; b) 

= 23 h the same after 23 h. 
Values of the temperature 
gradients at the points men- 
tioned: experimental: i) 
12-15 deg/cm; 3) 20-23; 5) 27- 
29; computed: 2) 14-15.5 
deg/cm; 4) 22; 6) 32. T, ~ 
L, mm. 

solutions which agree well with the exact value, are not applicable in this case (the limit 
conditions are not satisfied). The temperature dependence of lef has a ~ery complex form 
here (curve 3 in Fig. 3a), which however permits agreement between the results of the exact 
solution of the problem and computations from the Fourier equation. Since the method de- 
scribed is purely artificial, then the temperature dependence of %ef has no physical mean- 
ing. 

Moreover, the effective emissivity Eef of the system (a leucosapphire layer of given 
thickness molybdenum substrate) is determined by the method of [I0, ii] for the open leuco- 
sapphire surface in each of the computation zones, where the expression 

~xs = (1 - -  Rz) (1 ~ e - k z a  ) 1 + ( 1  --ezna~e--hxdJ +-~- -~  e - ~  , (13)  
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TABLE i. Comparison of Results of Computation and Experi- 
ment 

i 

Temp. gradient 
Container on crystallization 
location in Ifront, 'K/cm 
time (from 
beginning ot 
the process), 
h 

"~=18 

"~=23 

corn- [.~ 
puta- ~ ,~ 
tion o = 

I 

14 [ 12 !4,3 
15,5 ] 15 3,3 

Temp. gradient 
in transition 
z one, *K/cm 

~ " 

22 20 9,8 

32 29 9,35 

Value of temp. in 
imax. gradient 
domain, %< 

I 
corn- exper J 
puta- [mentI ~" 
:ion I ~  

2226 2221 0,2 
2207 2197 0,4 

Value of temp. at 
container nose,%< 

] 

corn- exper J 
puta- l iment 
tion 

i 
'2090 2075 [ 0,7 
1995 2017 1,1 

na (nm--nav)2~-• is the spec- is obtained for the normal spectral emissivity. Here ~ v= | 2 
(nm + ~v) ~ + • 

t r a l  e m i s s i v i t y  o f  t h e  m o l y b d e n u m  s u b s t r a t e  w i t h  r a d i a t i o n  t a k e n  i n t o  a c c o u n t  on t h e  a v e r a g e  
w i t h  t h e  r e f r a c t i v e  i n d e x  n c p ;  RX and k x a r e ,  r e s p e c t i v e l y ,  t h e  s p e c t r a l  c o e f f i c i e n t s  o f  
r e f l e c t i o n  and  a b s o r p t i o n ,  and  wra i s  t h e  i n d e x  o f  a b s o r p t i o n  o f  t h e  s u b s t r a t e  m a t e r i a l .  

The i n t e g r a t e d  n o r m a l  e m i s s i v i t y  o f  t h e  s y s t e m  i s  d e t e r m i n e d  b y  i n t e g r a t i n g  r177  w i t h  
r e s p e c t  t o  t h e  s p e c t r u m  i n  t h e  0 . 2 - 3 0  nan r a n g e  and  i s  u s e d  i n  t h e  c o m p u t a t i o n  o f  t h e  r a d i a n t  
heat transfer in the working space of the installation. 

The results of the computation show that [I0, ii] Cef depends strongly on T, especially 
in the 1700-2000"K range, and on the thickness of the leucosapphire layer. Values of r 
for a system semiopaque material-metal substrate, are 1.7-2.2 times greater than for molyb- 
denum, which indicates that utilization of the emissivity of molybdenum measured for radia- 
tion in a vacuum in the computations for an open surface can result in significant errors. 

As an illustration of the complex analysis of a HDC installation, results on the field 
T in the direction of crystal growth are presented in Fig. 4 for two discrete container lo- 
cations relative to the heater and are compared with the results of the experimental in- 
vestigations presented in [6]. Good agreement is observed between the computed and experi- 
mental results (see table), while the qualitative pattern of the temperature distribution 
along the crystal length practically corresponds completely with experiment. This affords 
a foundation for considering that the influence of different structural elements of the 
installation (the quantity of screens and their disposition, the spatial location of the 
container and the heater, etc.) on the field T being formed can successfully be analyzed by 
using the method developed. Moreover, a computation of several discrete container locations 
with the crystal relative to the heater will permit determination the time program for a 
power change, in a first approximation, to realize the required temperature conditions which 
can be refined more finely during experimental checkout. 

The complex experimental-design analysis performed for the apparatus to grow leuco- 
sapphire single crystals by the HDC method evidently showed that the main structural solu- 
tions of the working zone can be taken in the design stage on the basis of an analysis using 
the method proposed with a packet of computational programs. On the other hand, it is evi- 
dent that a detailed quantitative analysis of the temperature conditions of semiopaque 
crystal growth can be performed only on the basis of the exact solution of the multidimen- 
sional RCHT problem or experimentally. Despite the utilization of a large number of dif- 
ferent computational programs in this paper, the total computation time for one version is 
relatively small and is 25-40 min of machine time on a BESM-6 computer. 

NOTATION 

x, y, coordinates; p, material density; Cp, specific heat; ~, time; %x, %y, heat-con- 
duction coefficients; k, radiation wavelength; T, temperature; L, specific heat of a phase 
transition; pp, density at the phase transition temperature; V, velocity of phase interface 
motion; Xp, phase interface coordinate; ~, normal direction; 8 = T/100; Qi, resultant flux; 
Fi, area of the radiant section; oo, Stefarr-Boltzmann, constant; 6, thickness of the bunch of 
screens; ~, heat elimination coefficient; e, emissivity; n, refractive index; • index of 
absorption; k, absorption coefficient; d, thickness of the material layer. 
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GROWTH OF A METAL ISLAND FILM UNDER CONDITIONS OF NON-STEADY-STATE 

REEVAPORATION OF METAL ADATOMS 

A. V. Rogachev, V. I. Lashkevich, 
and V. V. Kharitonov 

UDC 539.23 

Taking into account the non-steady-state reevaporation of adatoms, the article 
solves the problem of diffusion growth of a system of uniformly distributed 
nuclei of the metallic phase. An expression describing the kinetics of change 

of the zone of nuclei capture is obtained. 

Investigations of the kinetics of the growth of nuclei of the metallic phase showed 
that at the initial stages the changes in the nuclei are determined solely by the diffusion 
sink flow of adatoms [i]. Under certain conditions it is even possible that accumulations 
of atoms are displaced. These results enable us to view condensation at the stage of growth 
of an island film as a diffusion problem and to use the obtained analytical expressions for 
describing the kinetics of deposition of metallic films. Among the large number of works 
dealing with this problem we can distinguish two trends. One examines steady-state prob- 
lems [2, 3]. The solution of the steady-state diffusion equation is applicable only in the 
calculation of systems for which the condensation time is much longer than the life of the 
adatoms in the adsorbed state. This state occurs at high temperatures of the surface of the 
substrate when the reevaporation of the metal adatoms is of steady-state nature. The works 
belonging to the second trend solve the non-steady-state diffusion equation [4, 5] but re- 
evaporation of metal adatoms is not taken into account, i.e., the case is described when 
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